您现在的位置是:网站首页> 编程资料编程资料
pyecharts绘制各种数据可视化图表案例附效果+代码_python_
2023-05-26
363人已围观
简介 pyecharts绘制各种数据可视化图表案例附效果+代码_python_
1、pyecharts绘制饼图(显示百分比)
# 导入模块 from pyecharts import options as opts from pyecharts.charts import Pie #准备数据 label=['Mac口红','Tom Ford口红','圣罗兰','纪梵希','花西子','迪奥','阿玛尼','香奈儿'] values = [300,300,300,300,44,300,300,300] # 自定义函数 def pie_base(): c = ( Pie() .add("",[list(z) for z in zip(label,values)]) .set_global_opts(title_opts = opts.TitleOpts(title="口红品牌分析")) .set_series_opts(label_opts=opts.LabelOpts(formatter="{b}:{c} {d}%")) # 值得一提的是,{d}%为百分比 ) return c # 调用自定义函数生成render.html pie_base().render()
2、pyecharts绘制柱状图
#导入模块 from pyecharts.globals import ThemeType from pyecharts import options as opts from pyecharts.charts import Bar #准备数据 l1=['星期一','星期二','星期三','星期四','星期五','星期七','星期日'] l2=[100,200,300,400,500,400,300] bar = ( Bar(init_opts=opts.InitOpts(theme=ThemeType.LIGHT)) .add_xaxis(l1) .add_yaxis("柱状图标签", l2) .set_global_opts(title_opts=opts.TitleOpts(title="柱状图-基本示例", subtitle="副标题")) ) # 生成render.html bar.render()
3、pyecharts绘制折线图
#导入模块 import pyecharts.options as opts from pyecharts.charts import Line #准备数据 x=['星期一','星期二','星期三','星期四','星期五','星期七','星期日'] y1=[100,200,300,400,100,400,300] y2=[200,300,200,100,200,300,400] line=( Line() .add_xaxis(xaxis_data=x) .add_yaxis(series_name="y1线",y_axis=y1,symbol="arrow",is_symbol_show=True) .add_yaxis(series_name="y2线",y_axis=y2) .set_global_opts(title_opts=opts.TitleOpts(title="Line-双折线图")) ) #生成render.html line.render()

4、pyecharts绘制柱形折线组合图
from pyecharts import options as opts from pyecharts.charts import Bar, Grid, Line #x轴的值为列表,包含每个月份 x_data = ["{}月".format(i) for i in range(1, 13)] bar = ( Bar() .add_xaxis(x_data) #第一个y轴的值、标签、颜色 .add_yaxis( "降雨量", [2.0, 4.9, 7.0, 23.2, 25.6, 76.7, 135.6, 162.2, 68.6, 22.0, 6.6, 4.3], yaxis_index=0, color="#5793f3", ) # #第二个y轴的值、标签、颜色 # .add_yaxis( # "蒸发量", # [2.6, 5.9, 9.0, 26.4, 28.7, 70.7, 175.6, 182.2, 48.7, 18.8, 6.0, 2.3], # yaxis_index=1, # color="#5793f3", # ) #右纵坐标 .extend_axis( yaxis=opts.AxisOpts( name="降雨量", type_="value", min_=0, max_=250, position="right", axisline_opts=opts.AxisLineOpts( linestyle_opts=opts.LineStyleOpts(color="#d14a61") ), axislabel_opts=opts.LabelOpts(formatter="{value} ml"), ) ) #左纵坐标 .extend_axis( yaxis=opts.AxisOpts( type_="value", name="温度", min_=0, max_=25, position="left", axisline_opts=opts.AxisLineOpts( linestyle_opts=opts.LineStyleOpts(color="#d14a61") ), axislabel_opts=opts.LabelOpts(formatter="{value} °C"), splitline_opts=opts.SplitLineOpts( is_show=True, linestyle_opts=opts.LineStyleOpts(opacity=1) ), ) ) .set_global_opts( yaxis_opts=opts.AxisOpts( name="降雨量", min_=0, max_=250, position="right", offset=0, axisline_opts=opts.AxisLineOpts( linestyle_opts=opts.LineStyleOpts(color="#5793f3") ), axislabel_opts=opts.LabelOpts(formatter="{value} ml"), ), title_opts=opts.TitleOpts(title="Grid-多 Y 轴示例"), tooltip_opts=opts.TooltipOpts(trigger="axis", axis_pointer_type="cross"), ) ) line = ( Line() .add_xaxis(x_data) .add_yaxis( "平均温度", [2.0, 2.2, 3.3, 4.5, 6.3, 10.2, 20.3, 23.4, 23.0, 16.5, 12.0, 6.2], yaxis_index=2, color="#675bba", label_opts=opts.LabelOpts(is_show=False), ) ) bar.overlap(line) grid = Grid() grid.add(bar, opts.GridOpts(pos_left="5%", pos_right="20%"), is_control_axis_index=True) grid.render()
5、pyecharts绘制散点图
# 导入模块 from pyecharts import options as opts from pyecharts.charts import Scatter # 设置销售数据 week = ["周一","周二","周三","周四","周五","周六","周日"] c =Scatter() # 散点图绘制 c.add_xaxis(week) c.add_yaxis("商家A",[80,65,46,37,57,68,90]) c.set_global_opts(title_opts=opts.TitleOpts(title="一周的销售额(万元)")) # 设置图表标题 c.render()
6、pyecharts绘制玫瑰图
from pyecharts import options as opts from pyecharts.charts import Pie label=['Mac口红','Tom Ford口红','圣罗兰','纪梵希','花西子'] values = [100,200,250,350,400] c = ( Pie() .add( "", [list(z) for z in zip(label,values)], radius=["30%", "75%"], center=["50%", "50%"], rosetype="radius", label_opts=opts.LabelOpts(is_show=False), ) .set_global_opts(title_opts=opts.TitleOpts(title="标题")) .set_series_opts(label_opts=opts.LabelOpts(formatter="{b}:{c} {d}%")) # 值得一提的是,{d}%为百分比 .render("玫瑰图.html") )
7、pyecharts绘制词云图
# 导入WordCloud及配置模块 from pyecharts import options as opts from pyecharts.charts import WordCloud from pyecharts.globals import SymbolType # 添加词频数据 words = [ ("Sam S Club", 10000), ("Macys", 6181), ("Amy Schumer", 4386), ("Jurassic World", 4055), ("Charter Communications", 2467), ("Chick Fil A", 2244), ("Planet Fitness", 1868), ("Pitch Perfect", 1484), ("Express", 1112), ("Home", 865), ("Johnny Depp", 847), ("Lena Dunham", 582), ("Lewis Hamilton", 555), ("KXAN", 550), ("Mary Ellen Mark", 462), ("Farrah Abraham", 366), ("Rita Ora", 360), ("Serena Williams", 282), ("NCAA baseball tournament", 273), ("Point Break", 265), ] # WordCloud模块,链式调用配置,最终生成html文件 c = ( WordCloud() .add("", words, word_size_range=[20, 100], shape=SymbolType.DIAMOND) .set_global_opts(title_opts=opts.TitleOpts(title="词云图")) .render("wordcloud_diamond.html") )
8、pyecharts绘制雷达图
from pyecharts import options as opts from pyecharts.charts import Radar v1 = [[8.5,50000,15000,8000,13000,5000]] v2 = [[8.1,42000,13000,7000,15000,7000]] def radar_base() ->Radar: c = ( Radar() .add_schema( schema=[ opts.RadarIndicatorItem(name='KDA',max_=10), opts.RadarIndicatorItem(name='输出', max_=60000), opts.RadarIndicatorItem(name='经济', max_=20000), opts.RadarIndicatorItem(name='生存', max_=10000), opts.RadarIndicatorItem(name='推进', max_=20000), opts.RadarIndicatorItem(name='刷野', max_=10000), ] ) .add( '射手',v1, color='blue', #通过颜色属性 将其填充 areastyle_opts=opts.AreaStyleOpts( opacity=0.5, color='blue' ), ) .add( '法师',v2, color='red', areastyle_opts=opts.AreaStyleOpts( opacity=0.5, color='red' ), ) .set_series_opts(label_opts=opts.LabelOpts(is_show=False)) .set_global_opts(title_opts=opts.TitleOpts(title='英雄成长属性对比')) ) return c radar_base().render("雷达图.html")
9、pyecharts绘制散点图
from pyecharts import options as opts from pyecharts.charts import Scatter from pyecharts.commons.utils import JsCode from pyecharts.faker import Faker c = ( Scatter() .add_xaxis(Faker.choose()) .add_yaxis( "商家A", [list(z) for z in zip(Faker.values(), Faker.choose())], label_opts=opts.LabelOpts( formatter=JsCode( "function(params){return params.value[1] +' : '+ params.value[2];}" ) ), ) .set_global_opts( title_opts=opts.TitleOpts(title="Scatter散点图-多维度数据"), tooltip_opts=opts.TooltipOpts( formatter=JsCode( "function (params) {return params.name + ' : ' + params.value[2];}" ) ), visualmap_opts=opts.VisualMapOpts( type_="color", max_=150, min_=20, dimension=1 ), ) .render("散点图.html") )
10、pyecharts绘制嵌套饼图
import pyecharts.options as opts from pyecharts.charts import Pie from pyecharts.globals import ThemeType list1 = [300,55,400,110] attr1 = ["学习", "运动","休息", "娱乐"] list2 = [40,160,45,35,80,400,35,60] attr2 = ["阅读", "上课", "运动", "讨论", "编程", "睡觉","听音乐", "玩手机"] inner_data_pair = [list(z) for z in zip(attr1, list1)] outer_data_pair = [list(z) for z in zip(attr2, list2)] ( Pie(init_opts=opts.InitOpts(theme=ThemeType.LIGHT)) .add( series_name="时长占比", data_pair=inner_data_pair, radius=[0, "30%"], label_opts=opts.LabelOpts(position="inner"), ) .add( series_name="时长占比", radius=["40%", "55%"], data_pair=outer_data_pair, label_opts=opts.LabelOpts( position="outside", formatter="{a|{a}}{abg|}\n{hr|}\n {b|{b}: }{c} {per|{d}%} ", background_color="
相关内容
- python深度学习tensorflow卷积层示例教程_python_
- Python使用wxpy模块实现微信两两群组消息同步功能(推荐)_python_
- python绘制玫瑰花情人节表白_python_
- Python 常见的配置文件写法梳理汇总_python_
- Python解析器Cpython的GIL解释器锁工作机制_python_
- 基于Python实现GeoServer矢量文件批量发布_python_
- python多线程对多核cpu的利用解析_python_
- python实现GATK多线程加速示例_python_
- Python+Selenium实现在Geoserver批量发布Mongo矢量数据_python_
- 使用matplotlib绘制并排柱状图的实战案例_python_
点击排行
本栏推荐
